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LETTER TO THE EDITOR 

Fallacies in the understanding of the quenching of the 
Hall effect: I1 

Vipin Srivastava and V Srinivasan 
School of Physics, Llniversity of Hyderabad. Hydcidbad-500 134. India 

Received 15 March 1989 

Abstract. A threshold magnetic field, Brhres, at which the skipping orbits begin to be formed, 
is obtained and an inequality between Bthres and B,,,,, up to which the Hall effect remains 
quenched, IS produced. It is shown that Bthres can at best be the lower bound for B,,,,. This 
renders untenable suggestions that the quenching phenomenon could be related to the 
skipping orbits. The quenching, thus, has neither a classical nor a semi-classical origin-it is 
a quantum mechanical phenomenon with a mechanism suggested by one of the authors. 

In a recent letter [l] one of us made an attempt to explain the phenomenon of quenching 
of the Hall effect (HE) [2, 31 by treating the electron as a classical particle impinging 
freely on the two edges of a quasi-one-dimensional (ID) system. After introducing the 
possibility of specular reflection from the edges we found that the HE could be quenched 
in the extreme situation where all the reflections, at all angles, were specular with 
probability one. This was argued to be too strict a condition to be met in an actual 
experiment. 

In this Letter we attempt to explain the above-mentioned ‘quenching’ phenomenon 
using a semi-classical approach, based on the idea of conduction along the ‘skipping 
orbits’ at the edges first proposed by Lifshitz and Kosevich (LK) [4]. In the HE geometry 
if the magnetic field B is so weak that the size of the smallest Landau orbit is larger than 
the width of the system, then according to LK the trajectory of an electron can take the 
shape of a series of connected segments of Landau orbits that are truncated due to 
collisions with the edge and specular reflections at the edge (shown in figure 1). The area 
of each segment of the orbit is to be quantised according to the Bohr-Sommerfeld 
quantisation rule: 

hc hc 
p dy = B X (area of a segment) = (n  + y )  - = n - 

e e 
- Y l  

n = 1 , 2 , 3  etc and 0 < y < 1; y varies slowly with energy and we can ignore it for 
convenience. Thus a segment encloses an integral number of flux quanta. We will study 
here whether the highly restricted geometry of the system that exhibits the quenching of 
the HE imposes any constraint on the formation of the skipping orbits and, furthermore, 
whether there is any connection between the quenching and the formation/non-for- 
mation of the skipping orbits. Beenakker and van Houten (BH) [5] have suggested that 
below a threshold magnetic field, Brhres, skipping orbits are not formed and this leads to 
the quenching of the Hall voltage. In [l] we have already shown that if the reason for 
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the non-formation of the skipping orbits is that the electrons in the quasi-iD system are 
frequently colliding against the two edges as is contended by BH [ 5 ] ,  then this cannot lead 
to the quenching. So we will first analyse the question of formation/non-formation of 
skipping orbits. 

Note that the semi-classical analysis of LK (see [6] for a detailed discussion) only 
appears to indicate that so long as a segment of a Landau orbit falling within a system 
can enclose at least one quantum of flux, a skipping orbit should be formed. Indeed, at 
very small B ,  the depth, d. penetrated into the system by a skipping orbit (see figure 1) 

F 

Figure 1. Trajectories of two electrons skipping in opposite directions over the two edges of 
aquasi-1D device ofwidth w. Thedepthdpenetratedinto the systemcan takeseveraldiscrete 
values. The specular reflection reverses the direction of U,. Note that the Lorentz force F 
on both the electrons acts in the same direction ( F  = e[& + (l/c)uF X B z ] ) .  

will be large and also the length of the orbit will have to be very large in order to enclose 
a flux quantum that occupies a large area. But if d is less than the width of the system 
and there is long-range phase coherence spanning at least the entire length of the system 
(to preclude scrambling of the phase as the orbit is traversed), the skipping orbits should 
be formed. If we consider a typical quasi-iD sample used in quenching experiments- 
100 nm x 3 pm-we find that for B as low as 0.05 T the system can contain three to four 
quanta of flux (each requiring about 0.8 x m2 to spread). Thus only if B is so small 
that one flux quantum requires more than, say, 2 x m2 of area do we expect no 
skipping orbit to be formed. So, can only be vanishingly small, whereas the 
experiments [2,3] indicate that the HE remain quenched for B as high as 0.1 T. We can, 
therefore, conclude that the experimental value of B,,,,, below which the HE remains 
quenched, is much greater than and that in between &res and B,,,, (i.e., for 

However, there is a flaw in the above estimation of Bth res  stemming from the fact that 
the system of interest is extremely narrow-quasi-iD. The uncertainty in the energy 

< B < B,,,,) the skipping orbits exist but the HE remains quenched. 
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Figure 2. A schematic plot of the energy levels 
and wavefunctions of the edge-bound states The 
corresponding skipping trajectories penetrate 
distances d,,  d 2 ,  d 3  etc-a discrete set of values 

€3 
E2F 

d2 d3 y ( V Y )  = ( e h @ ,  1 

measurement in a quasi-1D system of width w is given by 
A &  = h2/mw2 

which is a few orders of magnitude larger than the quantised stationary states granularity 
AE,,, for the electrons making a periodic movement at velocity uF along the skipping 
trajectories, given by [6] 

AEa = ( e / c )  uFBd,,. (3) 
where the d, are discrete values of the orbit penetration obtained in accordance with 
rule (l)?. (Expression (2) is obtained by taking the uncertainty in position in the y 
direction to be =w and by noting that the uncertainty in the measurement of the y 
momentum ( = h / w )  is comparable to the y momentum itself$.) So, because it is less 
than the uncertainty (2), the quantisation (3) cannot be observed. Therefore skipping 
trajectoriescannot be formed unless AE,, becomes comparable to A&. Using this criterion 

A& = AE,, (4) 

Bthres = (fic/e)/kFw 2d I ( 5 )  

we can obtain a better estimate of Bthies, 

for, say, n = 1. Since dl  will be of the order of w, should behave as k F 1 w 3 .  This 
result is the same as that obtained by BH [5]  (except for a factor of (27r-I) although the 
underlying argument here is very different from theirs. Before we begin to investigate 
whether the normal HE will be set up above Bthres we would like to note some useful 
information related to condition (4) and expression ( 5 ) .  

Our system will start behaving two-dimensionally, magnetically either (i) when A& 
becomes comparable to the Landau quantisation or (ii) when the magnetic length 

becomes comparable to the width w of the system, as pointed out in [3]. The 

i. The energy level system (3) may be considered as a series of allowed states for electrons in a potential well 
formed on one side by the infinite potential step at y = 0 and on the other by the potential V ( y )  = (e/c)u,B,. 
In other words the Lorentz force (uF x B )  acting on an electron is replaced by a force always directed along 
the normal to the edge of the system. Solving the Schrodinger equation for this problem gives the energy levels 
and the wavefunctions shown in figure 2 [7], the energy levels being the same as given by (3).  Note that as B 
increases, V ( y )  becomes steeper and AEn increases, i.e. the orbits become smaller and the skipping trajectories 
are drawn closer to the edges. 
$ k, takes the values 2z.i/w (i = 1, 2, . , .) i .e. ,  p y  = hi/w; at the same time ApsAy = h ,  i.e. Apy = h / A y  or 
Apy - h / w .  
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criteria (i) and (ii) are essentially the same and indeed lead to the same answer for 
the marginal magnetic field, B,, that marks the quas i -1~-2~ transition (magnetically 
speaking)?. The value of B, so obtained is 

B ,  = ( f ic /e) /w2.  

Clearly Bthres and B, are identical because at this point AEl becomes the same as the 
Landau quantisation, and since at this point Bthres and B, exceed the energy uncertainty 
A&, the energy quantisation first becomes apparent. Thus we learn that the first skipping 
trajectory is formed only when the system begins to behave two-dimensionally from the 
magnetic point of view, and when the trajectory is able to penetrate into the system a 
depth d l  = kF1.  In a system about 100 nm wide dl will be about 20 nm. We also learn 
that the &res depends on the system width as w2 and not as W 3 ,  as contended by BH [5] .  

After gathering all this information about Elthres we can now move on to our main 
concern of examining the relationship between the quenching and the skipping orbits- 
should the formation of skipping orbits above automatically lead to the normal 
HE? 

Suppose there is some mechanism that quenches the Hall voltage for B less than 
some Bcrit (let us, for the time being, not worry about the mechanism). Then in the 
presence of an electric field in the x-direction (in the plane of the system and normal to 
B )  the electrons of mass m will experience a force in they direction which will obey the 
following relation only for B = Bcrit (for which E, = 0): 

m du,/dt= (e /c)Bu,  (7)  
or 

Bv, = ( f ic /e)  Sky/&. 

In (7) we have taken the collision time z to be very large (a valid approximation in the 
ballistic transport regime), so C1 is ignored. E, = 0 implies that there is no net charge 
accumulation on one of the edges, i.e. B is not able to produce a deflection in the electron 
trajectories. Equation (7) (and so (8)) holds when B is just able to produce the desired 
deflection. Just beyond this point of time one edge of the system becomes more negative 
than the other and Ey will be set up to oppose the deflection of the charge. In a quasi-iD 
system of width w, 6ky will have to be of the order of l / w  (Ak,Ay = 1, or Aky = l /Ay ,  
i.e. Ak, = l /w) .  Also, in the ballistic transport regime [3] of interest here the mean free 
path 1 is quite large, so at ,  the time interval over which k, changes by l / w ,  will be less 
than l /ux,  Then B,,,,, the smallest magnetic field that can produce a change in k, of the 
order of l / w  and thereby change the energy by at least A s ?  will obey the following 
inequality: 

At  Bcrit the electron trajectories experience a net deflection in the y direction, i.e. the 
mechanism that prevented the deflection for B < Bcrit is overcome. Now one edge 
becomes more negative than the other and E, is established. This critical magnetic field 
is found to obey the inequality 

t Note that in [3] w = d/hc/eB is taken as the criterion for two-dimensionality, whereas we drop the factor 
of two to get the result (6). Our argument for this is that for B > B,, since the Landau quantisation hw, 

larger than A&, the relevant length scale at B,, which marks the onset of Landau quantisation, is 
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For I3 w we get 

Bcrit 2 (hc/e)/w2. (11) 

Bcrit Bthres (12) 

Comparing this with (6) (and recalling that B, = we find that 

i.e. at best, forms the lower bound for the onset of the normal HE so long as we 
are in the ballistic transport regime. In general, B,,,, is greater than Bthres, i.e. the H E  can 
remain quenched in spite of the formation of the skipping orbits contrary to the suggestion 
of BH [5]. To show conclusively that the quenching of the HE should not be linked with 
the skipping orbits in any way we show in the following how in the systems of interest 
the skipping orbits remain unaffected by the presence of theLorentzforce and, therefore, 
do not interfere with the mechanism (whatever it is) responsible for the quenching. 

The dragging force acts on the centres of the arcs of the segments and is normal to 
both the electric and magnetic fields. Since the sense of movement in the trajectories at 
the two edges is the same (say clockwise as in figure l), the dragging force on both these 
trajectories will act in the same direction. In the present situation where because of the 
small width of the system more than one trajectory, the d,-trajectory, may not be 
accommodated on either edge, the trajectory along the lower edge cannot be shrunk 
closer to the edge because it is already enclosing the minimum of one flux quantum. The 
trajectory along the upper edge can possibly move downwards if there is space available 
but since the rule (1) is to be obeyed, this movement will have to be at the expense of 
the deformation of the orbit. The depth a‘ and the angle of reflection a will increase. 
This will have the serious consequence of altering the potential V(y)  and increasing the 
energy AEl .  For this reason the downward movement of the upper trajectory may be 
forbidden. The Bohr-Sommerfeld quantisation, thus, ties the skipping trajectories to 
the edges. 

Another possibility is that the electrons near the upper edge moving in the dl- 
trajectory may be pulled downwards into the d2-trajectory and, to keep the energy of 
the system unchanged, the electrons near the lower edge may be pulled up into the d2- 
trajectory against the Lorentz force. Although this strengthens the argument for the 
quenching of the HE, such a possibility has to be ruled out for the reasons given below. 

The skipping orbits can be viewed as vortices of circulating current (in a mathematical 
sense) because (i) they trap an integral number of flux quanta, and (ii) the Bohr- 
Sommerfeld phase of a periodic trajectory has been recognised as being Berry’s geo- 
metrical phase [8] implying that the periodic skipping orbits are equivalent to a cyclic 
movement similar to the one that gives rise to the Aharonov-Bohm phase [9,10]. A 
transition from the d,-trajectory into the d2-trajectory would amount to the dilation of 
a vortex initially encircling one flux quantum until it is big enough to enclose two flux 
quanta. This is disallowed by Kelvin’s theorem (see, e.g., [ll]) according to which the 
strength of a vortex (the number of flux quanta in this case) must be a constant. If the 
field increases (increasing the magnitude of curl U in the case of fluid mechanics) then 
the cross section of the filament or  the area of the vortex must reduce to keep the vortex 
strength (= area times curl U) constant. We see that the change in field strength cannot 
induce a transition between vortices of different strengths. In the present case, by varying 
B we only change d l  and d2 etc, i.e. the level separation E,, changes but this cannot 
induce a transition between two levels E,,. A transition can be produced by scattering 
by, say, impurities. 
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Having settled the question of the role of skipping orbits as regards the quenching 
phenomenon, which was our main concern in this Letter, we can look into a possible 
mechanism for the quenching ( [12];  see also [13]) to check (i) how the skipping orbits 
do not interfere with it, and (ii) whether the value of Bcrit obtained for it satisfies the 
inequality (12).  

In the situation where the electron wavefunction spreads over the entire width of the 
system and the phase coherence exists over length scales larger than w (manifested in 
the above in 1 being Sw), one of us proposed a mechanism for the quenching of the Hall 
voltage based on a subtle idea involving ‘phase-driven current’ [12,13].  The critical 
magnetic field, Bcrlt, for the onset of the normal HE was found to be 

Bcrit = (hc/e)/4w2 (13) 

= (n/2)Bthres (14) 

Thus, 

which satisfies the inequality (12) as well as yielding excellent agreement with experi- 
ments [ 2 , 3 ] .  

While in the normal HE Ey is set up to stop J,, the transverse current due to the 
Lorentz force, from flowing, in this mechanism [12,13] the novel proposition is that a 
phase-driven current 7) is set up to counter 1,. Current J, is thus cancelled and the 
creation of Ey is suppressed at the outset. As soon as B is turned on, even the slightest 
current J, created as a result of it must be countered by an equal and opposite current 
.fy in order to prevent any charge build up on an edge that can, in turn, give rise to a field 
component E,. This is exactly the opposite of what happens in the normal HE. Within 
the framework of the mechanism of [12,13] the phenomenon of quenching can be 
termed as an anti-Ha11 Effect. 

Turning to the question (i) above we note that apart from those conduction electrons 
that meet the conditions for specular reflection together with the quantisation rule ( 1 )  
and thus have their movement quantised by getting locked into the skipping orbits, the 
movement of all others remains unquantised. We have seen how the former remain 
unaffected by the dragging force exerted jointly by the electric and magnetic fields. The 
latter, i.e. the electrons with unquantised movement, are subjected to the mechanism 
of [12,13] which aligns their movement in thex direction in the absence of E,. Thus the 
presence of the skipping orbits does not interfere with the mechanism of the quenching 

Finally, we will touch upon another feature reported in the experiments [2,  31 
although it is not related to the main subject of this paper. The experiments show a steep 
rise in the Hall voltage just above Bcrit-an attempt to ‘catch up’ for the lost classical 
variation of E, withB. We do not offer an explanation for this. We only make a deduction 
that may prove to be helpful in finding an explanation, should it be necessary. For 
B > Bcrit, the field E )  develops and so (7) takes the form 

for Bthres < < 

m du,/dt = -e[E,> - ( l /c )Bu,] .  (7‘) 
In the steady state (i.e. where = 0), the steeper (than classical) rise of E), indicates 
that U ,  increases as B increases contrary to the typical classical situation where U, remains 
independent of B. Since in the experiments J, is maintained constant, increasing U ,  

indicates a decrease in n ,  the number of charge carriers. This implies an increase in 
localisation. This enhanced localisation above Bcrit is also indicated in the experiments 
by positive magnetoresistance (p,,) for B > Bcrit. All this is very similar to what happens 
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in the transition region between the ith plateau and the (i - 1)th plateau in the quantum 
Hall regime. We analyse this in detail in a forthcoming paper. 

In summary, we point out that for the onset of the HE a deflection of the current- 
carrying electrons by the Lorentz force is necessary, not just the formation of skipping 
orbits along the edges. In a quasi-1D system we show that the former occurs at a critical 
magnetic field Bcrit that is in general greater in magnitude than the threshold magnetic 
fieldBthres at which the skipping orbits are first formed. For B < Bcrit the system does not 
obey the equation of motion (7) (or (7’)). The reason for this, according to the theory 
of [12, 131, is that the phase rigidity prohibits the deflection from occurring under the 
Lorentz force. The net force, therefore, has to be strong enough to overcome the effect 
of phase rigidity. Also, this has been shown [12,13] to occur when B becomes greater 
than Bcit given by (13). 

Vipin Srivastava would like to thank Professor D Shoenberg for discussions and for 
bringing [4] and [6] to his attention, Professor M Pepper and Professor Sir Brian Pippard 
for numerous discussions and encouragements, and Professor Sir Sam Edwards for 
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